If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-356=0
a = 1; b = 2; c = -356;
Δ = b2-4ac
Δ = 22-4·1·(-356)
Δ = 1428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1428}=\sqrt{4*357}=\sqrt{4}*\sqrt{357}=2\sqrt{357}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{357}}{2*1}=\frac{-2-2\sqrt{357}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{357}}{2*1}=\frac{-2+2\sqrt{357}}{2} $
| 3(m-2)=-2m+14 | | 9(v-2)=63 | | 5x-8+5x-8=80 | | (x-4)+(x-9)=5 | | 18b-11=8b-4 | | 2+2x=1x | | 6m+22/2=14 | | 8x2+32x-96=0 | | 6x+27=87 | | 25-u=278 | | 5+a/6=6 | | 0.50x+0.37(70)=27.5 | | 2(x+8)+6=22 | | -y/2=-16 | | 3x=1/2=5/2 | | 2/3x-3/2x=3/4x-9 | | 30×1-x×0.25=27.25 | | 0.5(10+12n)=1/3(15n+15) | | 4x^2+3^2=1225 | | x-8/10=40 | | y+10=4y-8 | | 3(x)+6=78 | | 2y2-11y-5=(y-5)2 | | 8y+12=29 | | 8+17p-1=5p+119-2p | | 4w-4=12 | | 18=2x-9 | | -4(x-5)+2=48 | | x-(-24)=-53 | | 4x+16=2(x+16 | | 5(10^x)=510 | | 5/7x+24=14 |